Diese Webseite verwendet ausschließlich technisch erforderliche Cookies.

Wir verwenden keine Tracking-Methoden und teilen Ihre Daten nicht mit Werbetreibenden.
Weitere Informationen finden Sie in unserer Datenschutzerklärung.

Studentische Arbeiten im Bereich Avionische Systeme

Early evaluation of network properties for future cabin avionics platforms

The increasing demands placed on communication networks by future aircraft cabin architectures pose significant challenges, especially with state-of-the-art aerospace network standards reaching their limits. Novel communication technologies like Time-Sensitive Networking (TSN) offer an improved performance, but come at the cost of higher configuration effort and complexity. In this work a conceptual avionics design framework shall be extended by an evaluation of network properties to support appropriate technology selection.

Tasks:

  • Familiarization with current avionics platforms and network technologies (A664 and TSN)
  • Design of a future cabin platform architecture using Matlab and MathWorks System Composer
  • Development of a method to evaluate network properties during conceptual avionics design

Smart Test Automation for Aviation Devices: Enhancing Efficiency and Reliability

In this thesis, our focus is on the practical development of a smart test automation system for aviation devices, specifically targeting the automation of parameter input using smart algorithms.
The scope of our research encompasses the development, evaluation, and validation of a micro ventilation control system (VCS) across various aviation devices, considering diverse functionalities. The expected outcomes include a functional system, a thorough comparative analysis, and practical insights derived from real-world testing scenarios. You will gain experience with state-of-the-art test systems and real life aviation devices, working with dynamic environments for improving the aviation development process significantly, contributing to faster turnaround for innovative technologies.

Tasks:

  • Research into model based aircraft architecture
  • Analyze the requirements for modern aircraft testing
  • Streamline test generation and execution through smart algorithms
  • Verify your results on state-of-the-art aviation hardware
  • Documentation of results

Simulation of a Ventilation Control System on a Test-System

Embark on an engaging exploration of cutting-edge aviation technology with our master’s research project. We delve into advanced simulation techniques for Ventilation Control Systems (VCS) in modern aircraft, adapting to the demands of future technologies. Our focus is on employing a model-based approach to enhance automation and craft intuitive interfaces, driving the evolution of aviation systems.
Join this unique opportunity to contribute to the ongoing transformation of aviation technology. Engage in innovative research, gain hands-on experience with state-of-the-art simulation tools and hardware. Acquire experience in running innovative test campaigns for verification. Become part of the journey reshaping the future of aviation!

Tasks:

  • Research state-of-the-art simulation systems and their
    capabilities
  • Analyze and familiarize yourself with the FST VCS model
  • Implement the VCS on state-of-the-art hardware
  • Simulate and verify the VCS implementation
  • Documentation of results

Virtuelles Testen - Kopplung physikalischer Simulationen mit funktionalen Testständen

Die Kopplung physikalischer Simulationen mit funktionalen Testständen ist ein Baustein, um bereits während der Entwicklung von Systemen mit der Verifikation & Validierung dieser zu beginnen und so Fehler frühzeitig zu finden. Physikalische Simulationen sind in der Regel sehr rechenintensiv, die Rechenleistung von Testständen jedoch meist limitiert bzw. durch Echtzeitanforderungen begrenzt. Eine Möglichkeit diesem Problem zu begegnen, ist die Aufteilung des Systems in Teilmodelle. Ferner muss weitere HW/SW in solche (hybriden) Teststände integriert werden. Eine wichtige Fragestellung in diesem Zusammenhang ist somit die Synchronisation & Kommunikation der einzelnen Teilmodelle.

Im Rahmen dieser Arbeit soll die Kopplung von physikalischen und funktionalen Modellen untersucht werden. Dabei sind unter anderem Fragen hinsichtlich der Implementierung und deren Echtzeitfähigkeit zu klären. Anhand der Ergebnisse sollen Hinweise für zukünftige Projekte abgeleitet werden.

Diese Arbeit erfolgt in Kooperation mit Airbus.

Aufgaben:

  • Analyse bestehender Kopplungsstrategien
  • Erstellung eines Modells mit funktionalen und physikalischen Komponenten
  • Implementierung einer Schnittstelle zur Kopplung der funktionalen und physikalischen Modelle
  • Applikation der Modelle auf ein Echtzeit-Test-System und Untersuchung der Limitierungen
  • Definition von Implementierungsrichtlinien
  • Dokumentation der Ergebnisse

Signalübertragung im Flugzeug mit Powerline-Kommunikation

Am Institut für Flugzeug-Systemtechnik werden innovative Technologie-Bausteine für zukünftige Flugzeuge untersucht. Eine Option für neue Kommunikationsnetzwerke ist die Kombination von Daten- und Stromversorgungsleitungen (Data-over-Power, oft auch Powerline Communication (PLC) genannt). Die Verwendung von Data-over-Power hat einige Vorteile, jedoch führt es auch dazu, dass sich bisher im Flugzeug getrennte Systeme Ressourcen teilen und so neue Abhängigkeiten entstehen, die zu Fehlern führen können.

Im Rahmen der Arbeit soll das Potential von Data-over-Power als Kommunikationstechnologie am Beispiel des Klimatisierungssystems untersucht und bewertet werden.

Aufgaben:

  • Einarbeitung in die Konzepte heutiger Data-over-Power-Anwendungen und deren Übertragung auf Flugzeuge
  • Untersuchung und Vergleich bestehender Kommunikationssysteme und Data-over Power Konzepte
  • Überprüfung der Anforderungen an Sicherheit und Zuverlässigkeit (im Fehlerfall)

Cache hit